\(B>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{30.31}\)
\(B>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{30}-\dfrac{1}{31}\)
\(B>\dfrac{1}{2}-\dfrac{1}{31}=\dfrac{29}{62}\left(đpcm\right)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(B>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{30.31}\)
\(B>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{30}-\dfrac{1}{31}\)
\(B>\dfrac{1}{2}-\dfrac{1}{31}=\dfrac{29}{62}\left(đpcm\right)\)
Cho B= 1/2^2+1/3^2+1/4^2+...+1/30^2. Chứng minh rằng 29/62
Cho B= 1/2^2+1/3^2+1/4^2+...+1/30^2. Chứng minh rằng 29/62
Cho B=1/1^2+1/3^2+1/4^2+.._+1/2021.2023. Chứng minh rằng 29/62
Cho B=1/3-2/32+3/33-4/34+.....+29/329-30/330
chứng minh B<3/16
Chứng minh rằng tổng A=1+2+22+23+24+...+229+230 bằng( 231 - 1)
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
a) A = 1/12 +1/22+1/32+1/42+ ... +1/502. Chứng minh rằng A < 2 ?
b) B = 21+22+23+24+ ... +230. Chứng minh rằng B chia hết cho 21 ?
cho:
a) A= 2+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+\frac{1}{65}+\frac{1}{66}+\frac{1}{67}\)
chứng minh rằng A>5
b) B= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{89^2}+\frac{1}{90^2}\)
chứng minh rằng \(\frac{40}{91}\)<B<1
Chứng minh rằng 3 < 1+1/2+1/3+1/4+1/5+...+1/62+1/63<6