Violympic toán 9

BA

Cho \(ax^3=by^3=cz^3;\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1.\)C/m \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)

TH
11 tháng 1 2021 lúc 22:40

Đặt \(ax^3=by^3=cz^3=k\).

Khi đó ta có:

\(VT=\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{\dfrac{k}{x}+\dfrac{k}{y}+\dfrac{k}{z}}=\sqrt[3]{k\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\sqrt[3]{k}\).

\(VP=\sqrt[3]{\dfrac{k}{x^3}}+\sqrt[3]{\dfrac{k}{y^3}}+\sqrt[3]{\dfrac{k}{z^3}}=\sqrt[3]{k}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\sqrt[3]{k}\).

Từ đó ta có đpcm.

Bình luận (0)
TH
11 tháng 1 2021 lúc 22:49

Ta có: ax3 = \(\dfrac{ax^2}{\dfrac{1}{x}}\)

Tương tự ta có: ax3 = by3 = cz3 

hay \(\dfrac{ax^2}{\dfrac{1}{x}}=\dfrac{by^2}{\dfrac{1}{y}}=\dfrac{cz^2}{\dfrac{1}{z}}=\dfrac{ax^2+by^2+cz^2}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\) = ax2 + by2 + cz2 (T/c dãy tỉ số bằng nhau)

\(\Rightarrow\) \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{ax^3}=\sqrt[3]{by^3}=\sqrt[3]{cz^3}\)

\(\dfrac{\sqrt[3]{a}}{\dfrac{1}{x}}=\dfrac{\sqrt[3]{b}}{\dfrac{1}{y}}=\dfrac{\sqrt[3]{c}}{\dfrac{1}{z}}=\dfrac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)  (đpcm)

Chúc bn học tốt!

Bình luận (0)

Các câu hỏi tương tự
VD
Xem chi tiết
DN
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
PT
Xem chi tiết
TT
Xem chi tiết
VT
Xem chi tiết
SL
Xem chi tiết
NP
Xem chi tiết