P= \(\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}\sqrt{\dfrac{ca}{b+ca}}\)
cho a,b,c là 3 số thực dương thỏa mãn a+b+c=1 . Tìm giá trị lớn nhất của biểu thức P
cho a,b,c>0 và ab+bc+ac=1 tìm giá trị lớn nhất của
M=\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\)
Xét 3 số thực dương \(a;b;c\) thay đổi và thỏa mãn điều kiện: \(3a^2+2.\left(b^2+bc+c^2\right)=9\).
Tìm giá trị nhỏ nhất của biểu thức sau:
\(P=\sqrt{a^2+\dfrac{3}{b^2}}+\sqrt{b^2+\dfrac{3}{c^2}}+\sqrt{c^2+\dfrac{3}{a^2}}\)
P/s: Em xin phép nhờ quý thầy cô và các bạn hỗ trợ và giúp đỡ với ạ, em cám ơn rất nhiều!
cho a,b,c>0 ,a+b+c=1
tìm giá trị nhỏ nhất :A= \(\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a +bc}}+\sqrt{\dfrac{ca}{b+ca}}\)
1) tìm min \(P=\dfrac{2009x^2-6039x+6\sqrt{x^3-2x^2+2x-4}-8024}{x^2-3x-4}\)
2) cho các số thực dương a,b,c thỏa mãn a2+b2+c2=1
cm \(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)
Cho 3 số thực dương a, b, c thỏa mãn: \(2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{3}\). Tìm giá trị lớn nhất của biểu thức
P = \(\dfrac{1}{\sqrt{6a^2+3b^2}}+\dfrac{1}{\sqrt{6b^2+3c^2}}+\dfrac{1}{\sqrt{6c^2+3a^2}}\)
cho a ≥ 3, b ≥ 4,c ≥ 2 tìm max P=\(\dfrac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
Bài 1: Cho a, b, c > 0; ab + bc + ca = abc. Chứng minh rằng:
\(\dfrac{\sqrt{a^2+2c^2}}{ac}\) + \(\dfrac{\sqrt{c^2+2b^2}}{cb}\)+ \(\dfrac{\sqrt{b^2+2a^2}}{ab}\) ≥ \(\sqrt{3}\)
Bài 2: Cho a, b, c > 0 thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức:
B = 24a2 + b2 + 93c2
Cho a,b,c > 0 và: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt{2}\). Tìm Min
\(S=\sqrt[3]{a^2+\dfrac{1}{b^2}}+\sqrt[3]{b^2+\dfrac{1}{c^2}}+\sqrt[3]{c^2+\dfrac{1}{a^2}}\)