Cho a,b,c>0 t/m a+b+c=2
Tim GTLN của \(Q=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ca+2b}}\)
cho a,b,c dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). tìm GTLN của \(P=\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ca+a^2}}\)
Cho a,b,c là ba số thực dương thỏa mãn \(a+b+c=2\). Yìm GTLN của biểu thức
\(P=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ac+2b}}\)
Cho a, b, c là số thực dương thỏa mãn: a+b+c=1. Tìm GTLN của biểu thức: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ac}{b+ac}}\)
cho a , b , c > 0 :
tìm GTLN của \(P=\dfrac{\sqrt{ab}}{a+b+2c}+\dfrac{\sqrt{bc}}{b+c+2a}+\dfrac{\sqrt{ca}}{c+a+2b}\)
Cho a, b, c thỏa mãn: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7;a+b+c=23;\sqrt{abc}=3\). Tính giá trị của biểu thức: \(H=\dfrac{1}{\sqrt{ab}+\sqrt{c}-6}+\dfrac{1}{\sqrt{bc}+\sqrt{a}-6}+\dfrac{1}{\sqrt{ca}+\sqrt{b}-6}\)
Cho 3 số thực dương thỏa mãn a+b+c=3.
Tìm GTLN của biểu thức P=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)
Cho a\(\ge\)3, b\(\ge\)4 và c\(\ge\)2. Tìm GTLN của biểu thức S = \(\dfrac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{2\sqrt{2}}\)
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)