Violympic toán 9

EC

cho a , b , c > 0 :

tìm GTLN của \(P=\dfrac{\sqrt{ab}}{a+b+2c}+\dfrac{\sqrt{bc}}{b+c+2a}+\dfrac{\sqrt{ca}}{c+a+2b}\)

AH
7 tháng 1 2019 lúc 14:59

Lời giải:

Áp dụng BĐT AM-GM:

\(P=\frac{\sqrt{ab}}{(a+c)+(b+c)}+\frac{\sqrt{bc}}{(b+a)+(c+a)}+\frac{\sqrt{ca}}{(c+b)+(a+b)}\)

\(\leq \underbrace{\frac{\sqrt{ab}}{2\sqrt{(a+c)(b+c)}}+\frac{\sqrt{bc}}{2\sqrt{(b+a)(c+a)}}+\frac{\sqrt{ca}}{2\sqrt{(c+b)(a+b)}}}_{M}(*)\)

Xét:

\(M=\frac{1}{2}\frac{\sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)}}{\sqrt{(a+b)(b+c)(c+a)}}(1)\)

Theo BĐT Bunhiacopxky và AM-GM:

\((\sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)})^2\leq (ab+bc+ac)(a+b+b+c+c+a)\)

\(=2(ab+bc+ac)(a+b+c)=2[(a+b)(b+c)(c+a)+abc]\)

\(\leq 2[(a+b)(b+c)(c+a)+\frac{(a+b)(b+c)(c+a)}{8}]=\frac{9}{4}(a+b)(b+c)(c+a)\)

\(\Rightarrow \sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)}\leq \frac{3}{2}\sqrt{(a+b)(b+c)(c+a)}(2)\)

Từ \((1);(2)\Rightarrow M\leq \frac{1}{2}.\frac{3}{2}=\frac{3}{4}(**)\)

Từ \((*); (**)\Rightarrow P\leq M\leq \frac{3}{4}\)

Vậy \(P_{\max}=\frac{3}{4}\Leftrightarrow a=b=c\)

Bình luận (1)
LD
18 tháng 2 2019 lúc 22:38

2\(\dfrac{\sqrt{ab}}{a+b+2c},< =\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}< =\dfrac{a}{a+c}+\dfrac{b}{b+c}\)

tương tự

=> 2P≤3

Bình luận (1)

Các câu hỏi tương tự
VT
Xem chi tiết
H24
Xem chi tiết
AX
Xem chi tiết
DD
Xem chi tiết
DF
Xem chi tiết
GB
Xem chi tiết
NH
Xem chi tiết
PP
Xem chi tiết
HN
Xem chi tiết