Violympic toán 9

VT

Cho a,b,c>0 t/m a+b+c=2

Tim GTLN của \(Q=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ca+2b}}\)

H24
16 tháng 4 2021 lúc 21:06

Ta có: $\sqrt[]{ab+2c}=\sqrt[]{ab+(a+b+c)c}=\sqrt[]{ab+ac+bc+c^2}=\sqrt[]{(c+a)(c+b)}$ (do $a+b+c=2$)

Nên $\dfrac{ab}{\sqrt[]{ab+2c}}=\dfrac{ab}{\sqrt[]{(c+a).(c+b)}}=ab.\sqrt[]{\dfrac{1}{a+c}.\dfrac{1}{b+c}}$

Áp dụng bất đẳng thức Cauchy cho $\dfrac{1}{a+c};\dfrac{1}{b+c}>0$ có:

$\sqrt[]{\dfrac{1}{a+c}.\dfrac{1}{b+c}} \leq \dfrac{1}{2}.(\dfrac{1}{a+c}+\dfrac{1}{b+c})$

Nên $\dfrac{ab}{\sqrt[]{ab+2c}} \leq \dfrac{1}{2}.ab.(\dfrac{1}{a+c}+\dfrac{1}{b+c})= \dfrac{1}{2}.(\dfrac{ab}{a+c}+\dfrac{ab}{b+c})$

Tương tự ta có: $\dfrac{bc}{\sqrt[]{bc+2a}} \leq \dfrac{1}{2}.(\dfrac{bc}{a+b}+\dfrac{bc}{a+c})$

$\dfrac{ca}{\sqrt[]{ca+2b}} \leq \dfrac{1}{2}.(\dfrac{ca}{b+a}+\dfrac{ca}{b+c})$

Nên $Q \leq  \dfrac{1}{2}.(\dfrac{ab}{a+c}+\dfrac{ab}{b+c})+\dfrac{1}{2}.(\dfrac{bc}{a+b}+\dfrac{bc}{a+c})+ \dfrac{1}{2}.(\dfrac{ca}{b+a}+\dfrac{ca}{b+c})=\dfrac{1}{2}(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{ca}{b+a}+\dfrac{ca}{b+c})=\dfrac{1}{2}.(\dfrac{b(a+c)}{a+c}+\dfrac{a(b+c)}{b+c}+\dfrac{c(a+b)}{a+b}=\dfrac{1}{2}.(a+b+c)=1$ (do $a+b+c=2$)

Dấu $=$ xảy ra khi $a=b=c=\dfrac{2}{3}$

Bình luận (0)

Các câu hỏi tương tự
EC
Xem chi tiết
H24
Xem chi tiết
AX
Xem chi tiết
DD
Xem chi tiết
MT
Xem chi tiết
HN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết