Cho A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
B = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
a) So sánh A và B
b) Chứng minh A = \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)
So sánh:
a, A= \(\frac{10^8+2}{10^8-1}\) ; B= \(\frac{10^8}{10^8-3}\)
b, A= \(\frac{8^{10}+1}{8^{10}-1}\) ; B=\(\frac{8^{10}-1}{8^{10}-3}\)
c, A= \(\frac{100^9+4}{100^9-1}\): B= \(\frac{100^9+1}{100^9-4}\)
So sánh:
1/ A= \(\frac{10^9+2}{10^9-1}\) và B =\(\frac{10^9}{10^9-3}\)
2/ A = \(\frac{2015^8+3}{2015^8-2}\)và B=\(\frac{2015^8+4}{2015^8-1}\)
So sánh các phân số sau
a,A=\(\frac{54.107-53}{53.107+54}\) và B=\(\frac{135.269-133}{134.269+135}\) b, A=\(\frac{3^{10+1}}{3^9+1}\) và B=\(\frac{3^9+1}{3^8+1}\)
So sánh A với 1.
Biết: \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\frac{4}{5!}+...+\frac{8}{9!}+\frac{9}{10!}\)
bài 1 So sánh
a)\(A=\frac{3}{8^3}+\frac{7}{8^4}\) ; \(B=\frac{7}{8^3}+\frac{3}{8^4}\)
b)\(A=\frac{10^{1992}+1}{10^{1991}+1};B=\frac{10^{1993}+1}{10^{1992}+1}\)
c)\(A=\frac{10^7+5}{10^4-8};B=\frac{10^8+6}{10^8-7}\)
d)\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8};B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
e)\(A=\frac{2011}{2012}+\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)
A = \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}-1\right)\times\left(1-\frac{8}{1}-\frac{4}{1}-\frac{2}{1}\right)\)
B = \(\frac{\frac{3}{1}-\frac{6}{3}-\frac{9}{6}-\frac{369}{1}}{\frac{1}{3}+\frac{3}{6}+\frac{6}{9}-\frac{1}{963}}\)
C = \(\frac{1}{1}-\frac{1}{2}+\frac{3}{1}-\frac{1}{4}+\frac{5}{1}-\frac{1}{6}+\frac{7}{1}-\frac{1}{8}+\frac{9}{1}-\frac{1}{10}\)
so sánh các số trên ( A , B , C )
Cho\(A=\frac{1+3^1+3^2+...+3^{10}}{1+3^1+3^2+...+3^9}\) và \(B=\frac{1+5^1+5^2+...+5^{10}}{1+5^1+5^2+...+5^9}\) So sánh A và B
So sánh :
a)\(\frac{3}{124},\frac{1}{41},\frac{5}{207},\frac{2}{83}\)
b)\(\frac{-2525}{2929}và\frac{-217}{245}\)
c)\(A=\frac{3^{10}+1}{3^9+1}vàB=\frac{3^9+1}{3^8+1}\)
d)\(\frac{27}{82}và\frac{26}{75}\)