H24

Cho \(A=\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}\) .Hãy so sánh A với 3

PQ
17 tháng 6 2018 lúc 13:19

Tạm thời chỉ nghĩ ra được cách này -_- 

Ta có : 

\(A=\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}\)

\(A=\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2014+2}{2014}\)

\(A=\frac{2015}{2015}-\frac{1}{2015}+\frac{2016}{2016}-\frac{1}{2016}+\frac{2014}{2014}+\frac{2}{2014}\)

\(A=1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{2}{2014}\)

\(A=\left(1+1+1\right)-\left(\frac{1}{2015}+\frac{1}{2016}-\frac{2}{2014}\right)\)

\(A=3-\left[\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)\right]\)

Lại có : 

\(\frac{1}{2015}< \frac{1}{2014}\)

\(\frac{1}{2016}< \frac{1}{2014}\)

\(\Rightarrow\)\(\frac{1}{2015}+\frac{1}{2016}< \frac{1}{2014}+\frac{1}{2014}\)

\(\Rightarrow\)\(\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)< 0\)

\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)\right]>3\)

Vậy \(A>3\)

Chúc bạn học tốt ~ 

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
ND
Xem chi tiết
NH
Xem chi tiết
HP
Xem chi tiết
AH
Xem chi tiết
AH
Xem chi tiết
PT
Xem chi tiết