Sửa lại đề tý: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\) mới có thể tính được nhé!
Ta có: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(\Rightarrow A=1-\frac{1}{2020}=\frac{2020}{2020}-\frac{1}{2020}=\frac{2019}{2020}\)
Đến đây bạn tự làm tiếp nhé! Phân tích đến đây là dễ r =)
đề là như vậy bạn à ban đầu mk cũng nghĩ là sai đề nhg ko phải tại vì là đề thi HSG
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
ta nhóm số dương một nhóm , số âm 1 nhóm , đặt dấu trừ để đổi dấu số âm
\(A=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2020}\right)\)
ta có công thức => a-b=(a+b)-(b+b)=(a+b)-2b
\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2020}\right)\)
\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{1010}\right)\)
\(A=\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\)
suy ra A=B
Bỉ ngạn hoa,đề đúng đấy