BH

Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019+2020}\) và \(B=\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}\)

So sánh A và B

PG
23 tháng 4 2019 lúc 19:39

Sửa lại đề tý: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\) mới có thể tính được nhé!

Ta có: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(\Rightarrow A=1-\frac{1}{2020}=\frac{2020}{2020}-\frac{1}{2020}=\frac{2019}{2020}\)

Đến đây bạn tự làm tiếp nhé! Phân tích đến đây là dễ r =)

Bình luận (0)
BH
23 tháng 4 2019 lúc 19:46

đề là như vậy bạn à ban đầu mk cũng nghĩ là sai đề nhg ko phải tại vì là đề thi HSG

Bình luận (0)
NN
16 tháng 7 2020 lúc 9:14

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

ta nhóm số dương một nhóm , số âm 1 nhóm , đặt dấu trừ để đổi dấu số âm

\(A=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2020}\right)\)

ta có công thức =>  a-b=(a+b)-(b+b)=(a+b)-2b

\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2020}\right)\)

\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{1010}\right)\)

\(A=\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\)

suy ra A=B

Bình luận (0)
 Khách vãng lai đã xóa
NN
16 tháng 7 2020 lúc 9:15

Bỉ ngạn hoa,đề đúng đấy

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NO
Xem chi tiết
NN
Xem chi tiết
LV
Xem chi tiết
Xem chi tiết
HS
Xem chi tiết
TN
Xem chi tiết
C2
Xem chi tiết
TK
Xem chi tiết
NT
Xem chi tiết