Ôn tập: Phân thức đại số

CN

cho A=(\(\dfrac{1}{x-1}\) +\(\dfrac{x}{x^3-1}\) . \(\dfrac{x^2+x+1}{x+1}\)) : \(\dfrac{2x+1}{\left(x+1\right)^2}\)

tìm x thuộc Z để A thuộc Z

NH
23 tháng 12 2018 lúc 11:18

\(A=\left(\dfrac{1}{x-1}+\dfrac{x}{x^3-1}.\dfrac{x^2+x+1}{x+1}\right):\dfrac{2x+1}{\left(x+1\right)^2}\)

\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}.\dfrac{x^2+x+1}{x+1}\right):\dfrac{2x+1}{\left(x+1\right)^2}\)

\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{2x+1}{\left(x+1\right)^2}\)

\(=\left(\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{x}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\dfrac{2x+1}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\dfrac{x+1}{x-1}\)

Vậy \(A=\dfrac{x+1}{x-1}\)

Giả sử tìm được \(x\in Z\) để \(A\in Z\)

\(x\in Z\Leftrightarrow\left\{{}\begin{matrix}x+1\in Z\\x-1\in Z\end{matrix}\right.\)

\(A=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)

\(\Leftrightarrow2⋮x-1\Leftrightarrow x-1\inƯ\left(2\right)\)

Ta có các trường hợp :

+) \(x-1=1\Leftrightarrow x=2\)

+) \(x-1=2\Leftrightarrow x=3\)

+) \(x-1=-1\Leftrightarrow x=0\)

+) \(x-1=-2\Leftrightarrow x=-1\)

Vậy..

Bình luận (0)

Các câu hỏi tương tự
LM
Xem chi tiết
NT
Xem chi tiết
LM
Xem chi tiết
GX
Xem chi tiết
TH
Xem chi tiết
SK
Xem chi tiết
LD
Xem chi tiết
NY
Xem chi tiết
SK
Xem chi tiết