Gọi (a;b) = d
Khi đó : \(\left\{{}\begin{matrix}a⋮d\\b⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b⋮d\\b⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}p⋮d\\b⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=\left\{1;p\right\}\\b⋮d\end{matrix}\right.\left(1\right)\)
Vì \(p\in P;a+b=p\)
nên (a;b) = d < p
Từ (1) suy ra d = 1
khi đó (a;b) = 1
Vậy a;b nguyên tố cùng nhau