KL

Cho \(a,b\ne0\). Chứng minh: \(\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge3\left(\frac{a}{b}+\frac{b}{a}\right)\)

HN
8 tháng 8 2016 lúc 16:40

Ta có : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge3\left(\frac{a}{b}+\frac{b}{a}\right)\)(1) . Đặt \(x=\frac{a}{b}+\frac{b}{a}\)

\(\Rightarrow\left|x\right|=\left|\frac{a}{b}+\frac{b}{a}\right|=\left|\frac{a}{b}\right|+\left|\frac{b}{a}\right|\ge2\) \(\Rightarrow\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)

bpt (1) \(\Leftrightarrow\left(x^2-2\right)+4\ge3x\Leftrightarrow x^2-3x+2\ge0\)

Xét bất phương trình sau : \(y^2-3y+2\ge0\Leftrightarrow\left(y-1\right)\left(y-2\right)\ge0\Leftrightarrow\orbr{\begin{cases}y\ge2\\y\le1\end{cases}}\)

Từ \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\) suy ra x nằm trong miền nghiệm của bất  phương trình đang xét , vậy x phải  thỏa mãn  \(y^2-3y+2\ge0\), tức là \(x^2-3x+2\ge0\)đúng.

Suy ra (1) đúng. Vậy ta có đpcm 

Bình luận (0)
ML
8 tháng 8 2016 lúc 16:43

+TH1: a, b trái dấu \(\Rightarrow\frac{a}{b}+\frac{b}{a}\le0\)

\(\Rightarrow VT>0\ge VP\), bất đẳng thức luôn đúng

+TH2: a, b cùng dấu \(\Rightarrow\frac{a}{b}+\frac{b}{a}=\left|\frac{a}{b}\right|+\left|\frac{b}{a}\right|\ge2\sqrt{\left|\frac{a}{b}\right|.\left|\frac{b}{a}\right|}=2\)

bđt \(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)^2+2\ge3\left(\frac{a}{b}+\frac{b}{a}\right)\)

Đặt \(t=\frac{a}{b}+\frac{b}{a}\ge2\)

Cần chứng minh \(t^2+2\ge3t\Leftrightarrow\left(t-1\right)\left(t-2\right)\ge0\text{ }\left(\text{đúng }\forall t\ge2\right)\)

Bình luận (0)

Các câu hỏi tương tự
DP
Xem chi tiết
PQ
Xem chi tiết
ON
Xem chi tiết
LN
Xem chi tiết
PV
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
VN
Xem chi tiết
HL
Xem chi tiết