Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a, b \(\in\) N, a \(\ge\) b; ƯCLN( a, b) = 1 và a + b là số chẵn .
Chứng minh rằng tích P = a.b.(a - b).(a + b) chia hết cho 24
Cho a,b thuộc N, a >= b ; ƯCLN(a,b) = 1 và a + b là số chẵn. Chứng minh rằng tích P = ab.(a - b).(a + b) chia hết cho 24
cho a,b thuộc N, a>=b; ƯCLN(a,b)=1 và a+ b là số chẵn chứng minh rằng tích P=ab(a-b)(a+b) chia hết cho 24
Cho a b thuộc N , a >= b , ƯCLN (a,b)=1 và a+b là số chẵn . Chứng minh rằng tích P=ab.(a-b).(a+b) chia hết cho 24
1.Chứng minh 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
2. Tính tổng các số nguyên
a) -9<x<10 b)-7 bé hơn hoặc bằng x<8
3. Chứng minh rằng: 3+3^2+3^3+3^4+....+3^20 chia hết cho 12
4. Tìm a,b biết
a) a+b=432,ƯCLN(a,b)=36
b) a.b=864 và ƯCLN(a,b)=6
c) a.b=360 và BCNN(a,b)=60
5.Tính: (-2013) - (57 -2013)
6.a) 2x+7 chia hết cho x-1
2x+3 chia hết cho x-2
Bài 1: Chứng minh rằng nếu tổng của 3 số nguyên liên tiếp là số lẻ thì tích của chúng chia hết cho 24.
Bài 2: Cho a, b, c, d thuộc Z; a khác (-c). Chứng minh rằng a.b + c.d + a.d + b.c chia hết cho a+c.
Bài 3: Cho x= 1- 3+ 3^2- 3^3+ ... + 3^98- 3^99.
a) Chứng minh x chia hết cho 20.
b) Tìm x.
c) Chứng tỏ 3100: 4 dư 1.
Bài 4: Cho a, b, c thuộc N thỏa mãn a^2+ b^2+ c^2= 2051. Chứng minh rằng a.b.c chia hết cho 3 nhưng không chia hết cho 12.
cho a và b là hai số nguyên dương, ƯCLN (a,b)=1 và a+ b là số chẵn. Chứng minh rằng P=ab(a-b)(a+b) chia hết cho 24
2.Cho biểu thức P=(a+b+c).(a.b+b.b+a.c)-2.a.b (với a;b;c thuộc Z).Chứng minh nếu a+b+c chia hết cho 4 thì P chia hết cho 4
3. Cho 3 số nguyên a;b;c thỏa mãn a^2+b^2=c^2.Chứng minh :
Câu a:a.b.c chia hết cho 3
Câu b:a.b.c chia hết cho 12
4.Cho p là số nguyên tố >7.Chứng minh 3^p-2^p-1 chia hết cho 42.p
5.Chứng minh với mọi STN thì n^3-n+2 không chia hết cho 6
1) Chứng minh rằng nếu a chia hết cho m và b chia hết cho n thi a.b chia hết cho m.n
2)Chứng minh rằng nếu n chia hết cho 12(n khac 0) thì 1+3+5+7+.....+(2n-1) chia hết cho 144