NM

cho a,b\(\in\)N thỏa \(2a^2+a=3b^2+b\) Cmr a-b và 2a+2b+1 là 1 số chính phương

TT
31 tháng 8 2015 lúc 20:01

Nếu \(a=0\)  hoặc \(b=0\)  thì \(a=b=0\to a-b=0,2a+2b+1=1\) là các số chính phương.

Xét trường hợp  \(a,b\) là số nguyên dương.

Từ giả thiết suy ra \(2a^2+a-2b^2-b=b^2\to\left(a-b\right)\left(2a+2b+1\right)=b^2.\) 

Đặt \(d=UCLN\left(a-b,2a+2b+1\right)\to b^2\vdots d^2\to b\vdots d\to a\vdots d\to2a+2b\vdots d\to1\vdots d\to d=1.\)
Thành thử hai số \(a-b,2a+2b+1\) nguyên tố cùng nhau, có tích là số chính phương. Suy ra từng số phải là số chính phương (ĐPCM)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
LD
Xem chi tiết
BT
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết