Cho a, b, c là ba số khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)(các giả thiết đều có nghĩa)
Tính giá trị của biểu thức:
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ab}\)
Cho ba số a, b, c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}.\)
Tính giá trị của biểu thức \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}.\)
Cho 3 số a,b,c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị biểu thức M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
CMR: Nếu a,b,c là các số khác 0 thoả mãn: \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Cho a,b,c là ba số khác 0 thõa mãn:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)(với giả thiết các tỉ số đều có nghĩa). Tính giá trị của biểu thức
M\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Tìm 3 số a;b;c khác 0 thoả mãn:
\(\frac{ab+ac}{2}\)=\(\frac{bc+ba}{3}\)=\(\frac{ca+cb}{4}\)và a+b+c=69.
Mn giúp mình nhanh với, cần gấp ạ T^T
Cho các số a;b;c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá tri biểu thức \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}\)
Cho a,b,c là 3 số khác 0 thỏa mãn
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) (với giả thiết các tỉ số đều có nghĩa )
Tính giá trị biểu thức M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho 3 số a,b,c khác 0 thỏa mãn \(\frac{ab}{a+b}\)=\(\frac{bc}{b+c}\)=\(\frac{ca}{c+a}\)
Tính giá trị biểu thức:
M= \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)