PT

Cho \(a,b,c\in Z;abc\ne0;\frac{a^2+b^2}{2}=ab;\frac{b^2+c^2}{2}=bc;\frac{a^2+c^2}{2}=ac\)

Tính : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

OP
13 tháng 7 2016 lúc 20:03

Ta có : \(\frac{a^2+b^2}{2}=ab\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2-ab+b^2=0\Rightarrow\left(a-b\right)^2=0\Rightarrow a=b\)

Tương tự : \(\frac{b^2+c^2}{2}=bc\Rightarrow b=c\)

\(\frac{a^2+c^2}{2}=ac\Rightarrow a=c\)

Áp dụng t/c bắc cầu ta dc : \(a=b=c\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a\times3=9a\)

Bình luận (0)
SN
13 tháng 7 2016 lúc 19:58

=>a2+b2=2ab

=>a2-2ab+b2=0

=>(a-b)2=0=>a=b

tương tự=>b=c

=>a=b=c

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a.3=9a\)

Bình luận (0)
NC
13 tháng 7 2016 lúc 20:03

(a+b+c)(1/a+1/b+1/c)=3a.3/a=9

Bình luận (0)
LH
13 tháng 7 2016 lúc 20:20

Ta có:

\(\frac{a^2+b^2}{2}=ab\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2+b^2-2ab=0\)

\(\Rightarrow\left(a-b\right)^2=0\)

\(\Rightarrow a-b=0\)

\(\Rightarrow a=b\left(1\right)\)

\(\frac{b^2+c^2}{2}=bc\Rightarrow b^2+c^2=2bc\)

\(\Rightarrow b^2+c^2-2bc=0\)

\(\Rightarrow\left(b-c\right)^2=0\)

\(\Rightarrow b-c=0\)

\(\Rightarrow b=c\left(2\right)\)

\(\frac{a^2+c^2}{2}=ac\Rightarrow a^2+c^2=2ac\)

\(\Rightarrow a^2+c^2-2ac=0\)

\(\Rightarrow\left(a-c\right)^2=0\)

\(\Rightarrow a-c=0\)

\(\Rightarrow a=c\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow a=b=c\)

\(\Rightarrow a+b+c=3a\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3.\frac{1}{a}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a.3.\frac{1}{a}=9\)

Vậy \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=9\)

Bình luận (0)
PT
13 tháng 7 2016 lúc 20:23

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)\(=1+\frac{a}{b}+\frac{b}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=\left(1+1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

\(=3+\frac{a^2+b^2}{ab}+\frac{a^2+c^2}{ac}+\frac{b^2+c^2}{bc}\)\(3+\frac{a^2+b^2}{\frac{a^2+b^2}{2}}+\frac{a^2+c^2}{\frac{a^2+c^2}{2}}+\frac{b^2+c^2}{\frac{b^2+c^2}{2}}\)= 3 + 2 + 2 + 2 = 9

Bình luận (0)