17

Cho \(a,b,c\in N\) Giải thích tại sao , nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

NV
17 tháng 5 2022 lúc 15:31

\(\dfrac{a}{b}=\dfrac{a\left(b+c\right)}{b\left(b+c\right)}=\dfrac{ab}{b\left(b+c\right)}+\dfrac{ac}{b\left(b+c\right)};\dfrac{a+c}{b+c}=\dfrac{b\left(a+c\right)}{b\left(b+c\right)}=\dfrac{ab}{b\left(b+c\right)}+\dfrac{bc}{b\left(b+c\right)}\)

Theo đề bài \(\dfrac{a}{b}< 1\) suy ra \(a< b\) nên \(ac< bc\). Do đó \(\dfrac{ac}{b\left(b+c\right)}< \dfrac{bc}{b\left(b+c\right)}\)

Suy ra \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

 

Bình luận (0)

Các câu hỏi tương tự
AN
Xem chi tiết
Xem chi tiết
NH
Xem chi tiết
BT
Xem chi tiết
HV
Xem chi tiết
HN
Xem chi tiết
NH
Xem chi tiết
TK
Xem chi tiết
LT
Xem chi tiết