Cho a,b,c,d thuộc (0,1). Chứng minh rằng ít nhất một trong các bất đẳng thức sau sai:
2a(1-b)>1 ; 3b(1-c)>2 ; 8c(1-d)>1 ; 32d(1-a)>3
Cho 3 số a,b,c thuộc (0;1)
Chứng minh rằng có ít nhất 1 trong 3 bất đẳng thức sau là sai :
( 1 - b ) > 1/4
( 1 - c ) > 1/4
( 1 - a ) > 1/4
1) Cho a, b, c nguyên thỏa mãn: \(a^2+b^2=c^2\left(1+ab\right)\). Chứng minh rằng: \(a\ge c;b\ge c\)
2) Cho a, b, c dương và \(a+b+c\ge abc\). Chứng minh rằng: \(a^2+b^2+c^2\ge abc\)
3) Cho a, b, c dương và \(a+b+c\ge abc\). Chứng minh rằng ít nhất hai bất đẳng thức trong các bất đẳng thức sau là sai:
\(\frac{2}{a}+\frac{3}{b}+\frac{6}{c}\ge6\); \(\frac{2}{b}+\frac{3}{c}+\frac{6}{a}\ge6\); \(\frac{2}{c}+\frac{3}{a}+\frac{6}{b}\ge6\)
Cho 0 <a,b,c <1. CM có ít nhất 1 bất đẳng thức sai trong ba bất đẳng thức sau:
a (1-b)>1/4
b (1-c)>1/4
c (1-a)>1/4
1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.
2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.
3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.
4. Chứng minh rằng : Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác.
5. Cho a, b, c dương nhỏ hơn 1. Chứng minh rằng ít nhất một trong ba bất đẳng thức sau sai
a( 1 - b) > 1/4 ; b( 1- c) > 1/4 ; c( 1 - a ) > 1/4
6. Chứng minh rằng \(\sqrt{ }\)2 là số vô tỉ
7. Cho các số a, b, c thỏa mãn các điều kiện:
{ a+ b+ c> 0 (1)
{ ab + bc + ca > 0 (2)
{ abc > 0 ( 3)
CMR : cả ba số a, b, c đều dương
8. Chứng minh bằng phản chứng định lí sau : "Nếu tam giác ABC có các đường phân giác trong BE, CF bằng nhau, thì tam giác ABC cân".
9. Cho 7 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 100. CMR luôn tìm được 3 đoạn để có thể ghép thành 1 tam giác.
Cho 4 số a,b,c,d thỏa mãn điều kiện :\(ac\ge2\left(b+d\right)\)
Cmr: có ít nhất 1 trong hai bất đẳng thức sau là sai :\(a^2< 4b;c^2< 4d\)
Bằng phương pháp chứng minh phản chứng minh:
Nếu \(a+b=2cd\)thì ít nhất 1 trong 2 bất đẳng thức sau là đúng :\(c^2\ge a\), \(d^2\ge b\)
5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3. 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b. 7. Cho a, b, c là các số dương. Chứng minh : a3 + b3 + abc ≥ ab(a + b + c) 8. Tìm liên hệ giữa các số a và b biết rằng : |a+b|>|a-b| 9. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a b) Cho a, b, c > 0 và abc = 1. Chứng minh : (a + 1)(b + 1)(c + 1) ≥ 8 10. Chứng minh các bất đẳng thức: a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0