Cái này chị quên cách áp dụng dãy tỉ số rồi, đặt k cho dễ nhé =)).
Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\left(a,b,c,d\ne0\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\left(k\in Q\right)\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{ac}{bd}=\frac{bk.dk}{bd}=k.k=k^2\\\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{\left(b^2+d^2\right)k^2}{b^2+d^2}=k^2\end{cases}}\)
=> \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)(cùng bằng k2)