Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a,b,c >0.Chứng minh:\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{64}{a+b+c+d}\)
Cho a,b,c,d là các số dương. Chứng minh rằng: \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)
Cho a,b,c,d là các số dương. Chứng minh rằng: \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)
Giúp mình với Toán 8!!!!!!!!!!
Bài 1:Cho a,b,c là các số dương tùy ý. Chứng minh rằng: \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+c}{2}\)
Bài 2: Cho a,b,c là các số dương. Chứng minh các bđt:
a) \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}\)
b) \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}\left(d>0\right)\)
Cho a, b, c, d là các dố dương. Chứng minh rằng: \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
bài 1: chứng minh\(\frac{a}{b}+\frac{b}{2}\ge2\)với a>0, b>0
bài 2:chứng minh \(3a^2+\frac{b^2}{4}+\frac{c^2}{4}+\frac{d^2}{4}\ge a\left(b+c+d\right)\)
bài 3:chứng minh \(\frac{3a^2}{4}+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Bài 1: Chứng minh rằng: \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
Bài 2: Cho a,b,c > 0. Chứng minh \(\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
a) cho a,b>0 CMR \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b) cho a,b,c,d>0 CMR \(\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\)
PLEASE !!! GIÚP MK VS MK CẦN RẤT GẤP LÀM ƠN!!!
Cho a,b,c,d là các số dương
Chứng minh rằng \(\frac{a-b}{b+c}\)+ \(\frac{b-c}{c+d}\) +\(\frac{c-d}{a+d}\) \(\ge\) \(\frac{a-d}{a+b}\)