LA

cho a+b+c+d=0 chứng minh rằng a^3+b^3+c^3+d^3=3(ac-bd)*(b-d)

H24
24 tháng 8 2020 lúc 21:55

Ta có:\(a+b+c+d=0\)

\(a+c=-\left(b+d\right)\)

\(\left(a+c\right)^3=-\left(b+d\right)^3\)

\(\Leftrightarrow a^3+c^3+3ac\left(a+c\right)=-\left[b^3+d^3+3bd\left(b+d\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)-3ac\left(a+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)+3ac\left(b+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
24 tháng 8 2020 lúc 22:03

Sửa đề một chút : Cmr a+ b+ c+ d= 3 ( ac - bd ) ( b + d ) 

a + b + c + d = 0 

=> a + c = - ( b + d )

\(\Leftrightarrow\left(a+c\right)^3=-\left(b+d\right)^3\)

\(\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-d^3-3b^2d-3bd^2\)

\(\Leftrightarrow a^3+3ac\left(a+c\right)+c^3=-b^3-d^3-3bd\left(b+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\)( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DH
Xem chi tiết
PT
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
TK
Xem chi tiết
TB
Xem chi tiết
PM
Xem chi tiết
MR
Xem chi tiết