BT

Cho a+b+c+d=0. Chứng minh a3+b3+c3+d3=3(ab-cd)(c+d).

PN
8 tháng 12 2015 lúc 11:03

Từ  \(a+b+c+d=0\)  \(\Rightarrow\) \(a+b=-\left(c+d\right)\) \(\Rightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3-d^3-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\left(đpcm\right)\)

Bình luận (0)