TH

Cho a,b,c,d thuộc N* thỏa mãn a/b<c/d. Chứng minh rằng: 2014a+c/2014b+d <c/d

AH
31 tháng 10 2024 lúc 22:08

Lời giải:

$\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{a}{b}-\frac{c}{d}<0\Rightarrow \frac{ad-bc}{bd}<0$

$\Rightarrow ad-bc<0$ (do $bd>0$ với $b,d\in\mathbb{N}^*$)

Xét hiệu: 

$\frac{2014a+c}{2014b+d}-\frac{c}{d}=\frac{d(2014a+c)-c(2014b+d)}{d(2014b+d)}$

$=\frac{2014(ad-bc)}{d(2014b+d)}<0$ do $ad-bc<0$ và $d(2014b+d)>0$ với mọi $b,d\in\mathbb{N}^*$

$\Rightarrow \frac{2014a+c}{2014b+d}<\frac{c}{d}$

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết
KD
Xem chi tiết
DP
Xem chi tiết
NM
Xem chi tiết
NM
Xem chi tiết