NV

cho a,b.c.d là các số nguyên thỏa a.a +b.b = c.c+d.d. cmr a+b+c+d là hợp số

AK
11 tháng 9 2021 lúc 21:45

Xét ( a2 + b2 + c2 + d2 )  - ( a + b + c + d)

        = a(a -1)  + b( b -1) + c( c – 1) + d( d – 1)

Vì a là  số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1)  + b( b -1) + c( c – 1) + d( d – 1) là số chẵn

Lại có a2 + c2 = b2 + d2=>  a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.

Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)

 a + b + c + d là hợp số.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NV
Xem chi tiết
NV
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
TL
Xem chi tiết
HN
Xem chi tiết
NH
Xem chi tiết
NM
Xem chi tiết
NC
Xem chi tiết