Cho a,b,c,d khác 0 thỏa mãn:
b^2=ac ; c^2=bd ; a^3+b^3+c^3+d^3 khác 0. CMR:
(a^3+b^3+c^3/b^3+c^3+d^3)=a/d
Cho 4 số a,b,c,d khác 0 và thỏa mãn:
b2=ac , c2=bd , b3+c3+d3 khác 0
Cm:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)=\(\frac{a}{d}\)
Cho a, b, c, d là 4 số khác 0 thỏa mãn: \(b^2=ac;c^2=bd\) và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
co a,b ,c ,d là 4 số khác nhau và khác 0 thỏa mãn: b^2=ac; c^2=bd và b^3+c^3+d^3\(\ne\)0
CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)=\(\frac{a}{d}\)
Cho a,b,c,d là 4 số khác nhau, khác không thoả mãn điều kiện : b^2 = ac; c^2 = bd và b^3+c^3+d^3 không bằng 0
CM : (a^3+b^3+c^3)/(b^3+c^3+d^3) = a/d
Cho a,b,c,d là 4 số khác 0 thỏa mãn b2=ac, c2=bd và b3+c3+d3 khác 0. Chứng minh rằng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Cho các số a , b , c , d khác 0 và b3 + c3 + d3 khác 0 thỏa mãn : b2 = ac ; c2 = bd
Chứng minh rằng :
\(\frac{a^3+b^3+c^3}{b^3+c^3+d\text{ }^3}=\frac{a}{d}\)
cho a,b,c,d là số khác 0 thỏa mãn : \(b^2=ac;c^2=bd\) và \(b^3+c^3+d^3\) khác 0
CHo a ,b,c,d Khác 0 thỏa mãn b mũ 2 =ac;c mũ 2 = bd. Chứng Minh rằng a mũ 3 +b mũ 3 +c mũ 3 /b mũ 3+c mũ 3+d mũ 3 =a/d