Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TT

cho a,b,c,d  \(\in\left[0;1\right]\)cmr 

\(\frac{a}{bc+cd+db+1}+\frac{b}{cd+da+ac+1}+\frac{c}{da+ab+bd+1}+\frac{d}{ab+bc+ca+1}\le\frac{3}{4}+\frac{1}{4abcd}\)

AN
10 tháng 11 2017 lúc 8:48

Đặt \(\hept{\begin{cases}x=\frac{a+b}{2}\\y=\frac{c+d}{2}\end{cases}}\)

Ta có:

\(\left(1-a\right)\left(1-b\right)\ge0\)

\(\Leftrightarrow ab+1\ge a+b\)

\(\Rightarrow ab+bc+ca+1\ge bc+ca+a+b=\left(a+b\right)\left(c+1\right)\ge\left(a+b\right)\left(c+d\right)\left(1\right)\)

Tương tự ta có:

\(bc+cd+db+1\ge\left(a+b\right)\left(b+d\right)\left(2\right)\)

\(cd+da+ac+1\ge\left(a+b\right)\left(c+d\right)\left(3\right)\)

\(da+ab+bd+1\ge\left(a+b\right)\left(c+d\right)\left(4\right)\)

Từ (1), (2), (3), (4) ta có:

\(VT\le\frac{a+b+c+d}{\left(a+b\right)\left(c+d\right)}=\frac{x+y}{2xy}\le\frac{xy+1}{2xy}\left(@\right)\)

Ta lại có:

\(VP\ge\frac{3}{4}+\frac{1}{4x^2y^2}\left(@@\right)\)

Từ \(\left(@\right),\left(@@\right)\)cái cần chứng minh trở thành.

\(\frac{xy+1}{2xy}\le\frac{3}{4}+\frac{1}{4x^2y^2}\)

\(\Leftrightarrow\left(xy-1\right)^2\ge0\)(đúng)

Vậy ta có ĐPCM.

Bình luận (0)

Các câu hỏi tương tự
VA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết
PD
Xem chi tiết
LD
Xem chi tiết
NG
Xem chi tiết