Cho a, b, c, d > 0 thỏa mãn a + b + c + d = 4.
CMR : \(\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\ge2\)
(Bài này phân tích dưới mẫu nhưng mà đoạn sau lại tương đối khó và mk cx chưa nghĩ ra)
\frac{a}{1+b^{2}c}+\frac{b}{1+c^{2}d}+\frac{c}{1+d^{2}a}+\frac{d}{1+a^{2}b}\geq 2$
Ta có $\sum \frac{a}{1+b^2c}=\sum \frac{a^2}{a+ab^2c}$
Áp dụng Cauchy-Schwarzt ta có
$\sum \frac{a}{1+b^2c}=\sum \frac{a^2}{a+ab^2c}\geq \frac{(a+b+c+d)^2}{a+b+c+d+ab^2c+bc^2d+cd^2a+da^2b}=\frac{16}{4+ab^2c+bc^2d+cd^2a+da^2b}$
Do đó ta chỉ cần chứng minh $ab^2c+bc^2d+cd^2a+da^2b\leq 4$ là suy ra $\sum \frac{a}{1+b^2c}\geq \frac{16}{4+4}=2$
Bất đẳng thức đã cho tương đương $ab.bc+bc.cd+cd.da+da.ab\leq 4$ với $a+b+c+d=4$
Chuyển $\left ( ab,bc,cd,da \right )\Rightarrow (x,y,z,t)$
Ta có $x+y+z+t=ab+bc+cd+ad \leq \frac{(a+b+c+d)^2}{4}=4$
Lại có $ab^2c+bc^2d+cd^2a+da^2b=xy+yz+zt+tx \leq \frac{(x+y+z+t)^2}{4} \leq \frac{4^2}{4}=4$
Vậy ta có đpcm
Dấu = xảy ra khi $a=b=c=d=1$
doc lam sao
cho a,b,c,d không âm. Chứng minh rằng: 1/a^3+1/b^3+1/c^3+1/d^3 >= 1/a^2b+1/b^2c+1/c^2d+1/d^2a
cho\(\hept{\begin{cases}a,b,c,d>0\\a+b+c+d=4\end{cases}}\). Chứng minh rằng D=\(\frac{a}{1+b^2c}\)+\(\frac{b}{1+c^2d}\)+\(\frac{c}{1+d^2a}\)+\(\frac{d}{1+a^2b}\)>=2
Cho 4 số thực dương a,b,c,d thỏa mãn a+b+c+d = 4
Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)
chứng minh các BĐT
1.\(\frac{a+c}{a+b}+\frac{b+d}{b+c}+\frac{c+a}{c+d}+\frac{b+d}{d+a}\ge4\)với a,b,c,d >0
2.\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge4\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+d}+\frac{1}{2c+d+a}+\frac{1}{2d+a+b}\right)\)
3.\(\frac{1}{a^4+b^4+c^4}+\frac{2}{a^2b^2+b^2c^2+c^2a^2}\ge\left(\frac{3}{a^2+b^2+c^2}\right)^2\\ \)với a,b,c>0
4.\(\frac{1}{3x-2}-\frac{1}{x-10}+\frac{1}{13-2x}\ge\frac{3}{7}\)vói x,y t/m\(\frac{2}{3}< x< \frac{13}{2}\)
cho a,b,c,d>0, ctìm gtnn của (a+2a/3b)(1+2b/3c)(1+2c/3d)(1+2d/3a)
cho a,b,c,d>0, chứng minh rằng (a+2a/3b)(1+2b/3c)(1+2c/3d)(1+2d/3a)>=625/81
cho a,b,c,d là các số dương. CMR
a^4/(a^3+2b^3) + b^4/(b^3+2c^3) + c^4/(c^3+2d^3) +d^4/(d^3+2a^3) lớn hơn bằng (a+b+c+d)/3.
Help me!!!! Thanks mn.