NB

cho a+b+c=abc.Chứng minh a(b^2-1)(c^2-1)+b(c^2-1)(a^2-1)+c(a^2-1)(b^2-1)=4abc

DL
21 tháng 6 2019 lúc 20:11

Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(c^2-1\right)\left(a^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)

\(=\left(ab^2-a\right)\left(c^2-1\right)+\left(bc^2-b\right)\left(a^2-1\right)+\left(ca^2-c\right)\left(b^2-1\right)\)

\(=\left(ab^2c^2-ab^2-ac^2+a\right)+\left(bc^2a^2-bc^2-ba^2+b\right)+\left(ca^2b^2-ca^2-cb^2+c\right)\)

\(=a+b+c+ab^2c^2+bc^2a^2+ca^2b^2-ab^2-bc^2-ac^2-ba^2-ca^2-cb^2\)

\(=abc+abc.bc+abc.ca+abc.ab-ab\left(b+a\right)-bc\left(c+b\right)-ac\left(c+a\right)\)

\(=abc+ab\left(abc-b-a\right)+bc\left(abc-c-a\right)+ac\left(abc-a-c\right)\)               

\(=abc+ab\left(a+b+c-b-a\right)+bc\left(a+b+c-b-c\right)+ca\left(a+b+c-a-c\right)\)( a+b+c =abc )

\(=abc+abc+abc+abc=4abc\)

Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(c^2-1\right)\left(a^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)( điều phải chứng minh ).

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
TK
Xem chi tiết
CN
Xem chi tiết
PA
Xem chi tiết
PT
Xem chi tiết
PN
Xem chi tiết
PT
Xem chi tiết
TX
Xem chi tiết
TN
Xem chi tiết