Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(c^2-1\right)\left(a^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)
\(=\left(ab^2-a\right)\left(c^2-1\right)+\left(bc^2-b\right)\left(a^2-1\right)+\left(ca^2-c\right)\left(b^2-1\right)\)
\(=\left(ab^2c^2-ab^2-ac^2+a\right)+\left(bc^2a^2-bc^2-ba^2+b\right)+\left(ca^2b^2-ca^2-cb^2+c\right)\)
\(=a+b+c+ab^2c^2+bc^2a^2+ca^2b^2-ab^2-bc^2-ac^2-ba^2-ca^2-cb^2\)
\(=abc+abc.bc+abc.ca+abc.ab-ab\left(b+a\right)-bc\left(c+b\right)-ac\left(c+a\right)\)
\(=abc+ab\left(abc-b-a\right)+bc\left(abc-c-a\right)+ac\left(abc-a-c\right)\)
\(=abc+ab\left(a+b+c-b-a\right)+bc\left(a+b+c-b-c\right)+ca\left(a+b+c-a-c\right)\)( a+b+c =abc )
\(=abc+abc+abc+abc=4abc\)
Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(c^2-1\right)\left(a^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)( điều phải chứng minh ).