Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải hệ phương trình
\(\hept{\begin{cases}\left(a+b\right)\left(x+y\right)-cz=a-b\\\left(b+c\right)\left(y+z\right)-ax=b-c\\\left(a+c\right)\left(x+z\right)-by=c-a\end{cases}}\)
Cho ax+by+cz=0 và a+b+c=1/2016. Chưng minh :( ax2+by2+cz2) / [bc(y-z)2+ac(x-z)2+ab(x-y)2 ] =2016
cho x,y,z khác 0 và a,b,c >0 thỏa mãn:
ax+by+cz=0;và a+b+c=2017
tính giá trị biểu thức:
P=\(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
cho ax+by+cz=0,a+b+c=2015. tính Q=\(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2}\)
cho x,y,z khác 0 và a,b,c dương thỏa mãn ax+by+cx=0 và a+b+b=2007.
Tính :\(P=\frac{ax^2+by^2+cz^2}{bc\left(y-x\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
Biết ax+by+cz=0. Rút gọn:
A= \(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
Cho \(\hept{\begin{cases}ax+by+cz=0\\a+b+c=\frac{1}{2017}\end{cases}}\). Tính giá trị biểu thức \(P=\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2}\)
1, cho biết: x=by+cz ; y =ax+cz ; z=ax+by. CMR \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) 2, Cho a,b,c >0 và abc=1 Tìm GTLN của biểu thức P= \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ac}{c^5+a^5+ac}\)
Cho x=by+cz; y=ax+cz; z=ax+by. CMR: x+y+z=8xyz(a+1)(b+1)(c+1)