Cho 0 ≤a;b;c ≤2 và a-b;b-c;c-a khác 0. Chứng minh rằng: 1/(a-b)^2 + 1/(b-c)^2 +1/(c-a)^2 ≥9/4
chú ý khánh linh nhớ mai đãi kem nha viết mỏi tay quá cơ
TỚ VIẾT ĐỀ CHO BẠN TỚ MONG CÁC BẠN ĐỪNG ĐỂ Ý NHA
1) Cho a,b,c thộc đoạn 0,1 thỏa mãn a+b+c=2. chứng minh rằng a^2 +b^2+c^2<=2
2) cho ................................ chứng minh rằng a(1-b)+b(1-c)+c(1-a)<=1
3)...................................................................... a+b^2+c^3-ab-bc-ca<=1
4) cho a,b,c là độ dài 3 cạnh ta giác và a+b+c=2. chứng minh rằng a^2+b^2+c^2<2
5)...........................................................a+b+c=1. chứng minh rằng a^2+b^2+c^2 <1/2
Cho a,b,c>0 và a+b+c=3.Chứng minh rằng \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}>=\frac{3}{2}\)
Bài 1: Chứng minh rằng (x, y, z > 0)
Bài 2: Cho a + b + c > 0; abc > 0; ab + bc + ca > 0. Chứng minh rằng a > 0; b > 0; c > 0.
Bài 3: Chứng minh rằng (a, b, c > 0)
Bài 4: Chứng minh rằng (a + b) (b + c) (c + a) 8abc (a, b, c 0)
Bài 5: Chứng minh rằng (a, b, c, d 0)
Bài 6: Cho x, y, z > 0 thỏa mãn .
Chứng minh .
Bài 7: Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng (a+b-c) (b+c-a) (c+a-b) ab.
Bài 8: Cho x, y, z > 0; x+y+z = 1. Chứng minh rằng .
Bài 9: Cho 2 số có tổng không đổi. Chứng minh rằng tích của chúng lớn nhất khi và chỉ khi 2 số đó bằng nhau.
Bài 10: Cho a, b, c > 0. Chứng minh rằng
1. Cho a,b,c thuộc N* thỏa mãn a^2+b^2+c^2 chia hết a+b+c. Chứng minh rằng tồn tại vô hạn n sao cho a^n+b^n+c^n chia hết a+b+c
2. Cho x,y,z thuộc R thỏa x^2+2y^2+5z^2=1. Tìm min,max M=xy+yz+xz
3.Cho a,b,c>0. Chứng minh (a^3+b^3+c^3)^2 < (a^2+b^2+c^2)^3
cho a,b,c>0 thỏa mãn a+b+c=3
chứng minh rằng \(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\le\frac{3}{4}\)
Cho a, b, c>0 chứng minh rằng :
\(\frac{a^2}{b^3}+ \frac{b^2}{c^3}+ \frac{c^2}{a^3} \geq \frac{1}{a}+ \frac{1}{b} +\frac{1}{c} \)
Cho a, b, c > 0 thỏa mãn a + b + c = 3. Chứng minh rằng: \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
Bài 1: Cho a>0;b>0;c>0 thỏa mãn abc=1. Chứng minh rằng:
a)\(a^3+b^3+c^3\ge a+b+c\)
b) \(a^3+b^3+c^3\ge a^2+b^2+c^2\)
Bài 2: Với mọi a,b,c là các số thực. Chứng minh rằng:
\(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge a +b+c\)
Bài 3: Cho x,y,z là các số thực dương thỏa mãn \(x+y+z\le1\)
Chứng minh rằng: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)