TT

Cho (a+b+c)^2=a^2+b^2+c^2 và abc khác 0.

CMR: bc/a^2 + ab/c^2 + ac/b^2=3.

TN
27 tháng 11 2017 lúc 21:57

Ta có \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{\left(bc\right)^3+\left(ab\right)^3+\left(ac\right)^3}{\left(abc\right)^2}\)

Ta lại có (a+b+c)2=a2+b2+c2

=>a2+b2+c2+2(ab+bc+ac)= a2+b2+c2

=> 2(ab+bc+ac)=0=> ab+bc+ac=0

Ta cần chứng minh bài toán phụ x+y+z=0 thì

x3+y3+z3=3xyz

Ta thấy x+y+z=0=> x+y=-z

=> (x+y)3=-z3 => x3+3xy(x+y)+y3=-z3

=> x3+y3+z3=-3xy(x+y)=-3xy.(-z)=3xyz

Áp dụng vào bài toán ta có 

ab+bc+ac=0 => (ab)3+(bc)3+(ac)3=3(abc)2

=> \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)

=> đpcm

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TP
Xem chi tiết
HC
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
MT
Xem chi tiết
LL
Xem chi tiết