Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a, b. c ≠ 0, abc = 1 và \(\frac{a}{b^3}\)+ \(\frac{b}{c^3}\)+ \(\frac{c}{a^3}\)= \(\frac{b^3}{a}\)+\(\frac{c^3}{b}\)+\(\frac{a^3}{c}\)
CMR trong 3 số a, b, c luôn tồn tại 1 số là lập phương của 1 trong 2 số còn lại.
Cho 4 số nguyên dương a,b,c,d .Trong đó b là trung bình cộng của a,c,d,đồng thời \(\frac{1}{c}=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{d}\right)\)
Chứng minh rằng 4 số a,b,c,d lập thành tỉ lệ thức
Chứng minh rằng nếu 3 số a; b; c thoả mãn a+ b +c= 2008 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}=\frac{1}{2008}\)
thì trong 3 số đó phải có một số bằng 2008
Tìm x biết:
\((5^x+5^{x+1}+5^{x+2}):31=(3^{2x}+3^{2x+1}+3^{2x+2}):13\)
CMR:
\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2018}}+\frac{1}{3^{2019}}-\frac{1}{2}\) là một số âm
Với giá trị nào của x thì biểu thức:
\(M=\frac{2|2018x-2019|+2019}{|2018x-2019|+1}\) đạt giá trị lớn nhất
Cho a+b+c=2019 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{2019}\)
Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}\)
A, Cho 3 số a;b;c thỏa mãn \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)và 3a+2b-c khác 0 . Tính giá trị của biểu thức: \(B=\frac{a+7b-2c}{3a+2b-c}\)
B, Cho 3 số a;b;c thỏa mãn \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)và 3a+2b-c=4 . Tìm các số a;b;c
Cho a,b,c là 3 số thỏa mãn : a.b.c = 1
Chứng minh :
\(\frac{1}{a.b+a+1}+\frac{1}{b.c+b+1}+\frac{1}{a.b.c+bc+b}=1\)
Cho 3 số thực dương a,b,c thỏa mãn a+b+c=3
CMR: \(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}>\frac{3}{2}\)
tìm 3 số a,b,c biết\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a.b.c=480