a, cho a=+b+c =1; a,b,c dương
tìm GTNN: A= a/b2+1 + b/c2+1 + c/a2+1
b, cho a,b,c dương có tổng =2
tìm GTNN; B= a/ab+2c + b/bc+2a + c/ca+2b
c, cho a,b,c dương và a+b+c<1
tìm GTNN: C= 1/a2+2bc + 1/ b2+2ac + 1/c2+2ab
cho a,b,c>0;a+b+c>=1: tim GTNN: √(a²+1/ a²)+√(b²+1/b²)+√(c²+1/c²)
cho a,b,c>0; a+b+c<=3. Tìm gtnn của biểu thức: B=1/(1+a)+1/(1+b)+1/(1+c)
Cho a,b,c > 0 ; a+b+c ≤ 1. Tìm GTNN của P= a+b+c+1/a+1/b+1/c
(Nếu có thể dùng Cosi giúp mình nhé.)
1. Cho a,b,c>0 thỏa mãn 1/a+1/b+1/c=3.Tìm GTNN của P=1/a^2+1/b^2+1/c^2
2.Cho a,b,c khác 0 thỏa mãn a+b+c =0 và 1/a+1/b+1/c=7.Tính 1/a^2+1/b^2+1/c^2
3.Cho a<_b<_ c và a+b+c>0.Cm:a/b+b/c+c/a>_ b/a+c/b+a/c
Cho a,b,c>0 và a+b+c=3. Tìm gtnn của P=\(\dfrac{2a+b+c}{a+1}+\dfrac{a+2b+c}{b+1}+\dfrac{a+b+2c}{c+1}\)
1. Cho a + b + c = 9 và a,b,c là các số dương. Tìm GTNN của P = \(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\)
2. Cho a,b,c > 0 thõa mãn: a + b + c = 1. Tìm GTNN của Q = \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\)
cho a, b, c>0 và a+b+c=6
Tìm GTNN của P=1/căn(a+b)(b+c)+1/căn(b+c)(c+a)+1/căn(c+a)(a+b)
cho a,b,c là 3 số nguyên dương. Tìm gtnn
P=(a+b+c)(1/a+1/b+1/c)