cho a+b+c = 0 và a,b ,c khác 0
CMR 1/a^2 + 1/b^2 + 1/c^2 = (1/a + 1/b + 1/c)^2
Cho a+b+c = 0 và a,b ,c khác 0
CMR 1/a^2 + 1/b^2 + 1/c^2 = (1/a + 1/b + 1/c)^2
cho (a+b+c)^2= a^2+b^2+c^2 và a,b,c # 0. CMR 1/a^2 + 1/b^2 + 1/c^2 = 3/abc
cho a b c 0 và a+b+c=3 CMR a/1+b^2 +b/1+c^2 +c/1+a^2 >=3/2
Cho a,b,c là ba số đôi một khác nhau và 1/b-c +1/c-a +1/a-b = 0. CMR số a/(b-c)^2 +b/(c-a)^2 + c/(a-b)^2 = 0
Cho a,b,c là ba số đôi một khác nhau và 1/b-c + 1/c-a + 1/a-b=0. CMR số a/(b-c)^2 +b/(c-a)^2 + c/(a-b)^2 = 0
cho a+b+c=0 cmr: 1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 + 1/a^2+c^2-b^2=0 (a,b,c khác 0
cho a>b>c>0 và a^2+b^2+c^2=1. cmr a^3/(b+c)+b^3/(a+c)+c^3/(a+b)>=1/2
Cho a+b+c=0, cmr
[1/(a^2+b^2-c^2)]+[1/(b^2+c^2-a^2)]+[1/(c^2+a^2-b^2)]=0