Gọi ... là P
Với \(a=b=c=\frac{3}{2}\Rightarrow P=\sqrt{5}\)
Ta sẽ chứng minh \(\sqrt{5}\) là GTNN của \(P\)
Áp dụng BĐT CAuchy-Schwarz ta có:
\(\sum_{cyc}\frac{\sqrt{a^2-1}}{a}=\sum_{cyc}\sqrt{1-\frac{1}{a^2}}\leq\sqrt{(1+1+1)\sum_{cyc}\left(1-\frac{1}{a^2}\right)}=\sqrt{3\sum_{cyc}\left(1-\frac{1}{a^2}\right)}\) (máy có vài ko công thức k xài được nên đành gõ = latex nên chữ hơi bé)
Tức là ta cần chứng minh \(3\sum_{cyc}\left(1-\frac{1}{a^2}\right)\leq5\)\(\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq\frac{4}{3}.\)
Đặt \(\hept{\begin{cases}a+b+c=3u\\ab+bc+ca=3v^2\\abc=\text{ }w^6\end{cases}}\)\(\Leftrightarrow 9v^4-6uw^3\geq\frac{4}{3}w^6\)
Ta thừa biết \(a,b,c\) là 3 nghiệm dương của phương trình
\((x-a)(x-b)(x-c)=0\)
\(\Leftrightarrow x^3-3ux^2+3v^2x-w^3=0\)
\(\Leftrightarrow 3v^2x=-x^3+3ux^2+w^3\)
Vì vậy đường thẳng \(y=3v^2x\) và đồ thị \(y=-x^3+3ux^2+w^3\) có 3 điểm chung và khi đường thẳng \(y=3v^2x\) là một đường thẳng tiếp tuyến với đồ thị \(y=-x^3+3ux^2+w^3\) thì xảy ra trương hợp 2 biến bằng nhau (bình đẳng)
Khi đó \(b=a\) kết hợp với điều kiện suy ra\(c=\frac{27+36a}{32a^2-18}\)
Hay ta cần chứng minh \(a^4+2a^2\left(\frac{27+36a}{32a^2-18}\right)^2\geq\frac{4}{3}a^4\left(\frac{27+36a}{32a^2-18}\right)^2\)
\(\Leftrightarrow a^2(2a-3)^2(8a^2+12a+9)\geq0\) Luôn đúng
ủa khi gõ nó bé tí mà post lên lại to z nhỉ :?