Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

OP

Cho \(a,b,c>1\) . \(CMR:\)

\(\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3c^2}{c-1}\ge48\)

NN
8 tháng 10 2016 lúc 20:12

Ta có \(\frac{4a^2}{a-1}=\frac{4a^2-4+4}{a-1}=\frac{4\left(a^2-1\right)+4}{a-1}\)

\(=\frac{4\left(a-1\right)\left(a+1\right)+4}{a-1}=4\left(a+1\right)+\frac{4}{a-1}\)

\(=4\left(a-1\right)+\frac{4}{a-1}+8\)

Vì \(a>1\Rightarrow a-1>0\), áp dụng bđt cosi cho 2 số 4(a-1) và \(\frac{4}{a-1}\)ta được

\(4\left(a-1\right)+\frac{4}{a-1}\ge2\sqrt{\frac{4\left(a-1\right).4}{a-1}}=2\sqrt{4^2}=8\)

\(\Leftrightarrow4\left(a-1\right)+\frac{4}{a-1}+8\ge16\)

\(\Leftrightarrow\frac{4a^2}{a-1}\ge16\)             (1)

Chững minh tương tự, ta được

\(\frac{5b^2}{b-1}\ge20\)                     (2)

\(\frac{3c^2}{c-1}\ge12\)                    (3)

Cộng (1)(2)(3) ta được

\(\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3b^2}{c-1}\ge48\)

Bình luận (0)

Các câu hỏi tương tự
KS
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BH
Xem chi tiết
NT
Xem chi tiết
CH
Xem chi tiết
NL
Xem chi tiết
PM
Xem chi tiết
KS
Xem chi tiết