\(VP-VT=\frac{\left(a-b\right)^2}{2b\left(a^2+b^2\right)}+\frac{\left(b-c\right)^2}{2a\left(b^2+c^2\right)}+\frac{\left(c-a\right)^2}{2b\left(c^2+a^2\right)}\)
Xấu hơn, nhưng khủng hơn:
Mình viết nhầm nhá, VP-VT=...
\(VP-VT=\frac{\left(a-b\right)^2}{2b\left(a^2+b^2\right)}+\frac{\left(b-c\right)^2}{2a\left(b^2+c^2\right)}+\frac{\left(c-a\right)^2}{2b\left(c^2+a^2\right)}\)
Xấu hơn, nhưng khủng hơn:
Mình viết nhầm nhá, VP-VT=...
cho a+b+c=1 và 1/a+1/b+1/c=0
CMR:a2+b2+c2=1
1.cho x,y thỏa mãn: ax+by=c,bx+cy=a,cx+by=b
CMR:a^3+b^3+c^3=3abc.
2.cho a,b,c khác 0 sao cho:ay-bx/c=cx-az/b=bz-cy/a
CMR:(ax+by+cz)=(x^2+y^2+z^2)(a^2+b^2+c^2)
Cho biết\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2;\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
\(CMR:a+b+c=abc\)
1.Tìm max và Min
\(A=\sqrt{3-x}+\sqrt{x+7}\)
2. Cho \(a^2+b^2+c^2=1\)
\(CMR:a+b+c+ab+bc+ca\text{≤}1+\sqrt{3}\)
1.Tìm max và Min
\(A=\sqrt{3-x}+\sqrt{x+7}\)
2. Cho \(a^2+b^2+c^2=1\)
\(CMR:a+b+c+ab+bc+ca\text{≤}1+\sqrt{3}\)
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
1. Cho a,b,c>0 thỏa mãn 1/a+1/b+1/c=3.Tìm GTNN của P=1/a^2+1/b^2+1/c^2
2.Cho a,b,c khác 0 thỏa mãn a+b+c =0 và 1/a+1/b+1/c=7.Tính 1/a^2+1/b^2+1/c^2
3.Cho a<_b<_ c và a+b+c>0.Cm:a/b+b/c+c/a>_ b/a+c/b+a/c
Cho ab+bc+ac=1,a,b,c thuoc Q CMR:A=(a^2+1)(b^2+1)(c^2+1) la binh phuong cua 1 so huu ti
cho a+b+c=0 cmr: 1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 + 1/a^2+c^2-b^2=0 (a,b,c khác 0
Tớ đang gấp , giúp mình nhé
a^2+b^2+c^2+3=2(a+b+c) CMR:a=b=c=1