LQ

cho a,b,c>0

cm \(\frac{a}{a+b}+\frac{c}{c+a}+\frac{b}{b+c}\)không phải là số nguyên

HP
10 tháng 3 2016 lúc 21:43

Đặt D= a/(a+b)+b/(b+c)+c/(c+a)

ta có:D>a/(a+b+c)+b/(b+c+a)+c/(c+a+b)=(a+b+c)/(a+b+c)=1 (*)

Mặt khác, ta có: D =( 1 - b/a+b)+(1 - c/b+c)+(1 - a/c+a) < 3-(b/a+b+c + c/b+c+a + a/c+a+b)=3-1=2

=> D<2 (**)

 Từ (*);(**) =>1<D<2 nên D ko là số nguyên (đpcm)

 xin lỗi bn vì mk ko gõ trong fx được, chỗ nào ko hiểu thì nhắn tin cho mk

Bình luận (0)
HP
11 tháng 3 2016 lúc 20:27

đặt \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

Ta có: \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)

=>A>1 (1)

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\left(1-\frac{b}{a+b}\right)+\left(1-\frac{c}{b+c}\right)+\left(1-\frac{a}{c+a}\right)<3-\left(\frac{b}{a+b+c}+\frac{c}{b+c+a}+\frac{a}{c+a+b}\right)=3-1=2\)

=>A<2(2)

từ (1);(2)=>1<A<2=> A ko là số nguyên=>đpcm
 

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
Xem chi tiết
PA
Xem chi tiết
NH
Xem chi tiết
Xem chi tiết
NT
Xem chi tiết
HA
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết