KT

cho a+b+c=0

CM \(a^3+a^2c-abc+b^2c+b^3=0\)

H24
18 tháng 9 2019 lúc 20:42

\(a^3+a^2c-abc+b^2c+b^3.\)

\(=\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)

theo đề ta có \(a+b+c=0\)

\(\Rightarrow\left(a^2-ab+b^2\right)\left(a+b+c\right)\)

\(=\left(a^2-ab+b^2\right)\cdot0=0\)

\(\Rightarrow a^3+a^2c-abc+b^2c+b^3=0\left(đpcm\right)\)

Bình luận (0)
H24

Bài làm

Ta có: \(a^3+a^2c-abc+b^2c+b^3\)

\(=a^3+b^3+\left(a^2c-abc+b^2c\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a+b+c\right)\left(a^2-ab+b^2\right)\)

Thay \(a+b+c=0\)và biểu thức trên ta được:

\(=0.\left(a^2-ab+b^2\right)\)

\(=0\)( đpcm )

~ Bài này khó v~, mất nửa tiếng ms nghĩ ra. ~
# Học tốt #

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
NC
Xem chi tiết
DT
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
LN
Xem chi tiết
LC
Xem chi tiết
my
Xem chi tiết