Cho a,b,c > 0 thỏa mãn abc=1 .Chứng minh rằng :
\(\frac{a^4}{b^2\left(c+2\right)}+\frac{b^4}{c^2\left(a+2\right)}+\frac{c^4}{a^2\left(b+2\right)}\ge1\)
cho 3 số a, b, c>0, và a+b+c=3. chứng minh rằng:
\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{c^4}{\left(c+2\right)\left(a+2\right)}\ge\frac{1}{3}\)
giải giup minh nhe
Bài 1:Cho a,b,c,d là các số dương. Chứng minh rằng :
\(\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}+\frac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{c^4}{\left(c+d\right)\left(c^2+d^2\right)}+\frac{d^4}{\left(d+a\right)\left(d^2+a^2\right)}\ge\frac{a+b+c+d}{4}\)
Bài 2:Cho \(a>0,b>0,c>0\).\(CM:\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 3: a) Cho x,y,>0. CMR:\(\frac{x^3}{x^2+xy+y^2}\ge\frac{2x-y}{3}\)
b) Chứng minh rằng\(\Sigma\frac{a^3}{a^2+ab+b^2}\ge\frac{a+b+c}{3}\)
Cho a,b,c > 0 thỏa mãn a + b + c = 3.
Chứng minh rằng: \(\frac{a^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{b^4}{\left(c+a\right)\left(c^2+a^2\right)}+\frac{c^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{3}{4}\)
1) Cho a, b, c > 0. Chứng minh rằng:
\(\frac{bc}{2a+b+c}+\frac{ca}{2b+c+a}+\frac{ab}{2c+a+b}\le\frac{a+b+c}{4}\)
2) Cho a, b, c > 0, 2 + a + b + c = abc. Chứng minh rằng:
\(a^2\left(1+b\right)+b^2\left(1+c\right)+c^2\left(1+a\right)+36\ge12\left(a+b+c\right)\)
Thánh nào làm hộ e với ạ ♥ ♥ ♥
Cho a, b, c > 0 thỏa mãn điều kiện abc = 1. Chứng minh rằng:
\(\frac{1}{^{a^4\left(a+b\right)}}+\frac{1}{b^4\left(b+c\right)}+\frac{1}{c^4\left(c+a\right)}\ge\frac{3}{2}\)
Cho a , b , c là các số thực dương thỏa mãn a + b + c = 1 Chứng minh rằng :
\(\frac{a}{1+9bc+4\left(b-c\right)^2}+\frac{b}{1+9ca+4\left(c-a\right)^2}+\frac{c}{1+9ab+4\left(a-b\right)^2}\ge\frac{1}{2}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Chứng minh rằng :
\(\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(a-c\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le2\)
Hóng sol hay cho bài này.
Cho a,b,c >0. Chứng minh rằng: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}+\frac{\left(9+4\sqrt{2}\right)\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)
(tthnew)