Cho a,b,c thỏa mãn a+b+c=1/2; (a+b).(b+c).(c+a) khác 0
Gía trị của P=\(\frac{2ab+c}{\left(a+b\right)^2}.\frac{2bc+a}{\left(b+c\right)^2}.\frac{2ca+b}{\left(c+a\right)^2}\)
Cho a+b+c=0 và a,b,c khác 0.Rút gọn biểu thức
M=\(\frac{2ab}{a^2+\left(b+c\right)\left(b-c\right)}+\frac{2bc}{b^2+\left(c+a\right)\left(c-a\right)}+\frac{2ca}{c^2+\left(a+b\right)\left(a-b\right)}\)
cho a+b+c=0 và a, b, c đều khác 0. Rút gọn biểu thức:
\(\frac{2ab}{a^2+\left(b+c\right)\left(b-c\right)}+\frac{2bc}{b^2+\left(c+a\right)\left(c-a\right)}+\frac{2ca}{c^2+\left(a+b\right)\left(a-b\right)}\)
Cho \(a+b+c=\frac{1}{2}\)và \(\left(a+b\right).\left(b+c\right).\left(a+c\right)\ne0\)
Tìm \(A=\frac{2ab+c}{\left(a+b\right)^2}.\frac{2bc+a}{\left(b+c\right)^2}.\frac{2ac+b}{\left(a+c\right)^2}\)
Rút gọn:
\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)
với: c2+2ab-2ac-2bc=0; b\(\ne\)c; a+b\(\ne\)c
cho a,b,c dương và a+b+c=1.CMR: \(\frac{\sqrt{\left(^{a^2+2ab}\right)}}{\sqrt{\left(b^2+2c^2\right)}}+\frac{\sqrt{\left(^{b^2+2bc}\right)}}{\sqrt{\left(c^2+2a^2\right)}}+\frac{\sqrt{\left(^{c^2+2ac}\right)}}{\sqrt{\left(a^2+2b^2\right)}}\ge\frac{1}{a^2+b^2+c^2}\)
Cho a,b,c khác nhau đôi một và ab+bc+ca=1. Tính giá trị các biểu thức:
a) A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
b) B =\(\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
a+b+c=1/2, (a+b).(b+c).(a+c) khác 0.
P=?
\(P=\frac{2ab+c}{\left(a+b\right)^2}.\frac{2bc+a}{\left(b+c\right)^2}.\frac{2ac+b}{\left(a+c\right)^2}\)
Dạng này là dạng gì vậy mọi người?
Cám ơn mọi người.
Cho a, b, c đôi một khác nhau, thỏa mãn: ab + bc+ ca = 1. Tính giá trị của biểu thức:
a) A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
b) B = \(\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)