Dễ thấy: \(a^2+b^2+c^2\ge ab+bc+ca\). Mà \(a^2+b^2+c^2\le3\) nên \(ab+bc+ca\le3\)
Áp dụng BĐT Schwarz cho 2 bộ số: (1;1;1) và (1+ab;1+bc;1+ca) ta có:
\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{9}{3+ab+bc+ca}\ge\frac{9}{3+3}=\frac{3}{2}\)(Do \(ab+bc+ca\le3\))
=> ĐPCM. Dấu "=" xảy ra <=> a=b=c=1.