NM

Cho \(a+b+c=0\)\(a,b,c\ne0\)

Chứng minh:

\(A=\sqrt{\dfrac{6a^2}{a^2-b^2-c^2}+\dfrac{6b^2}{b^2-c^2-a^2}+\dfrac{6c^2}{c^2-a^2-b^2}}\) là số nguyên

Có ai giỏi toán khôngkhocroi

TD
27 tháng 3 2017 lúc 18:46

Ta có :\(a+b+c=0\)

\(\Rightarrow a=-b-c\)

\(\Leftrightarrow a^2=\left(b+c\right)^2\)\(\Leftrightarrow a^2=b^2+c^2+2bc\)

\(\Leftrightarrow a^2-b^2-c^2=2bc\)

cmtt ta có \(b^2-c^2-a^2=2ca\)

\(c^2-a^2-b^2=2ab\)

Ngoài ra cần cm \(a^3+b^3+c^3=3abc\) cái này bạn tự xem trên mạng

Khi đó \(A=\sqrt{\dfrac{6a^2}{2bc}+\dfrac{6b^2}{2ca}+\dfrac{6c^2}{2ab}}\)

\(=\sqrt{\dfrac{3a^2}{bc}+\dfrac{3b^2}{ca}+\dfrac{3c^2}{ab}}\)

\(=\sqrt{\dfrac{3\left(a^3+b^3+c^3\right)}{abc}}\)

\(=\sqrt{\dfrac{3.3abc}{abc}}=\sqrt{9}=3\)

Vậy A=3 khi a+b+c=0 và a,b,c khác 0

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
NM
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
XB
Xem chi tiết
NV
Xem chi tiết
II
Xem chi tiết
OT
Xem chi tiết
NT
Xem chi tiết