Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

VH

cho a,b,c>0 và a+b+c=4.CMR:\(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ac}{c+a+2b}\le1\)

TP
24 tháng 11 2015 lúc 19:41

Áp dụng BĐT: \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Ta có: \(\frac{ab}{a+b+2c}=ab.\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{b+c}+\frac{1}{c+a}\right)\)(1). Tương tự ta có:

\(\frac{bc}{b+c+2a}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{c+a}\right)\text{ (2)};\frac{ca}{c+a+2b}\le\frac{ca}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\text{ (3)}\)

Cộng từng vế của (1), (2) và (3) ta có: 

\(\frac{ab}{a+b+2}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\le\frac{1}{4}\left(\frac{bc+ca}{a+b}+\frac{ab+ca}{b+c}+\frac{ab+bc}{c+a}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}.4=1\)

Xảy ra đẳng thức khi và chỉ khi a = b = c = \(\frac{4}{3}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
TK
Xem chi tiết
TP
Xem chi tiết
DH
Xem chi tiết
GB
Xem chi tiết
TX
Xem chi tiết
TB
Xem chi tiết
TB
Xem chi tiết