TL

Cho a;b;c>0 và a+b+c=3. Chứng minh \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)

TA
27 tháng 7 2017 lúc 20:45

Ta có

\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{ab^2+b^2}{b^2+1}\ge\left(a+1\right)-\frac{ab^2+b^2}{2b}=\left(a+1\right)-\frac{ab+b}{2}\)   (1)

Tương tự  \(\frac{b+1}{c^2+1}\ge\left(b+1\right)-\frac{bc+c}{2}\)   (2)

và  \(\frac{c+1}{a^2+1}\ge\left(a+1\right)-\frac{ca+a}{2}\)   (3)

Cộng (1), (2), (3) vế theo vế:

\(VT\ge\left(a+b+c+3\right)-\frac{\left(ab+bc+ca\right)+\left(a+b+c\right)}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}=3\)

Đẳng thức xảy ra  \(\Leftrightarrow a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
LB
Xem chi tiết
MH
Xem chi tiết
NV
Xem chi tiết
PQ
Xem chi tiết
MC
Xem chi tiết
PD
Xem chi tiết
NK
Xem chi tiết
LN
Xem chi tiết