TL

Cho a,b,c>0 và a+b+c=3. Chứng minh \(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{3}{2}\)

TA
27 tháng 7 2017 lúc 20:20

Vì a, b, c > 0

Ta có  \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

 Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(VT=\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{\left(1+1+1\right)^2}{3+\left(ab+bc+ca\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}a=b=c\\\frac{1}{1+ab}=\frac{1}{1+bc}=\frac{1}{1+ca}\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
DP
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
NT
Xem chi tiết
DC
Xem chi tiết
TN
Xem chi tiết
NM
Xem chi tiết