Tham khảo: Câu hỏi của Lê Thành An - Toán lớp 9 - Học toán với OnlineMath
Tham khảo: Câu hỏi của Lê Thành An - Toán lớp 9 - Học toán với OnlineMath
Cho a.b,c là các số thực thỏa mãn 0<a,b,c<1 và ab+bc+ca=1.
Tìm GTNN của P=\(\frac{a^2\left(1-b\right)}{b}+\frac{b^2\left(1-c\right)}{c}+\frac{c^2\left(1-a\right)}{a}\)
Cho các số thực a,b,c thỏa 0<a,b,c<1 và ab+bc+ca=1. Tìm GTNN của biểu thức:
\(A=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
Cho a,b,c>0 và ab+bc+ca=2011abc
Tìm GTNN của \(Q=\frac{1}{a\left(2011a-1\right)^2}+\frac{1}{b\left(2011b-1\right)^2}+\frac{1}{c\left(2011c-1\right)^2}\)
Cho các số thực dương a,b,c thỏa mãn abc>=12 và bc>=8
Tìm GTNN M=\(a+b+c+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{8}{abc}\)
cho a,b,c >0, a+b+c=ab
Tìm GTNN của biểu thức: \(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\)
cho a,b,c >0. tìm gtnn của biểu thức \(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\)
cho a,b,c > 0. tìm gtnn của biểu thức
\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\)
Bài 1: Cho các số a, b, c > 0 sao cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\). Tìm GTNN của Q = \(\sqrt{\frac{ab}{\left(a+bc\right)\left(b+ca\right)}}+\sqrt{\frac{bc}{\left(b+ca\right)\left(c+ab\right)}}+\sqrt{\frac{ca}{\left(c+ab\right)\left(a+bc\right)}}\)
Bài 2: Cho các số a, b, c > 0 sao cho \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\) .
a) CMR: \(\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{16}{\left(a+b\right)^3}\)
b) Tìm GTLN của: P = \(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(a+2b+c\right)^2}+\frac{1}{\left(a+b+2c\right)^2}\)
Bài 3: Cho tam giác ABC nhọn nội tiếp (O). Gọi H là trực tâm tam giác. Chứng minh góc HAB = góc OAC.
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình !!! PLEASE!!!
cho a,b,c>0 và abc=1
chứng minh M=\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)\(>=\frac{1}{a+b+c}\)