Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a,b,c>0 và abc=1. CMR:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
Cho a,b,c > 0 và ab+bc+ca = 3. CMR:
\(\frac{a}{2b^3+1}+\frac{b}{2c^3+1}+\frac{c}{2a^3+1}\ge1\)
Cho a,b,c >0 và a+b+c=3
CMR: \(\frac{1}{\sqrt{2a+b+1}}+\frac{1}{\sqrt{2b+c+1}}+\frac{1}{\sqrt{2c+a+1}}\ge\frac{3}{2}\)
Cho a,b,c > 0 và ab +bc + ca = 3 . CMR \(\frac{a}{2b^3+1}+\frac{b}{2c^3+1}+\frac{c}{2a^3+1}\ge1\)
1) cho a;b;c ko âm .chứng minh \(\sqrt{\frac{a+2b}{3}}+\sqrt{\frac{b+2c}{3}}+\sqrt{\frac{c+2a}{3}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
2) cho a;;b;c dương và abc=1. chứng minh \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\ge\frac{3}{2}\)
Cho a;b;c>0 và abc =1
Tìm \(P_{max}=\frac{1}{a+2b+3}+\frac{1}{b+2c+3}+\frac{1}{c+2a+3}\)
Cho a,b,c>0 và 1/a+1/b+1/c=4.Chứng Minh:\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)
cho a;b;c>0.CMR:\(\frac{a}{c+2a}+\frac{b}{a+2b}+\frac{c}{b+2c}\le1\)
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm a^2+b^2+c^2 bé hơn hoặc bằng abc. Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm a+b+c<=3. Cmr \(\frac{ab}{\sqrt{3+c}}+\frac{bc}{\sqrt{3+a}}+\frac{ca}{\sqrt{3+b}}\le\frac{3}{2}\)
4) Cho a,b,c>0 tm a+b+c=2. Cmr \(\frac{a}{\sqrt{4a+3bc}}+\frac{b}{\sqrt{4b+3ca}}+\frac{c}{\sqrt{4c+3ab}}\le1\)
5) Cho a,b,c>0. Cmr \(\sqrt{\frac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\frac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\frac{c^3}{5c^2+\left(a+b\right)^2}}\le\sqrt{\frac{a+b+c}{3}}\)
6) Cho a,b,c>0. Cmr \(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\le\frac{1}{3}\)
Giúp mình với nhé các bạn