Cho a,b,c>0 thỏa mãn \(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}\ge1\). Chứng minh rằng \(a+b+c\ge ab+bc+ca\)
cho a,b,c là độ dài 3 cạnh của 1 tam giác và abc=1. Chứng minh rằng: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge ab+bc+ca\)
Cho a>0, b>0, c>0, chứng minh rằng\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Cho a, b, c > 0 biết abc = 1. Chứng minh \(a^2+b^2+c^2\ge a+b+c\)
Cho a, b, c > 0 thỏa mãn điều kiện abc = 1. Chứng minh rằng:
\(\frac{1}{^{a^4\left(a+b\right)}}+\frac{1}{b^4\left(b+c\right)}+\frac{1}{c^4\left(c+a\right)}\ge\frac{3}{2}\)
Bài 1: Cho a>0;b>0;c>0 thỏa mãn abc=1. Chứng minh rằng:
a)\(a^3+b^3+c^3\ge a+b+c\)
b) \(a^3+b^3+c^3\ge a^2+b^2+c^2\)
Bài 2: Với mọi a,b,c là các số thực. Chứng minh rằng:
\(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge a +b+c\)
Bài 3: Cho x,y,z là các số thực dương thỏa mãn \(x+y+z\le1\)
Chứng minh rằng: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
Cho \(a,b,c>0\)chứng minh rằng: \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
Cho a.b.c>0 và abc=1. Chứng minh rằng: (1+a+b+c)/2 =>căn(1+1/a+1/b+1/c)
cho 3 số dương a,b,c thỏa mãn abc = 1 và a+b+c > 1/a + 1/b + 1/. chứng minh rằng (a-1)(b-1)(c-1) > 0