Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a,b,c>0 và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
Chứng minh rằng \(a.b.c\le\frac{1}{8}\)
1. cho a, b, c > 0 và a + b + c =< căn3
Tìm min D biết D = căn(a2 + 1/b2) + căn(b2 + 1/c2) + căn(c2 + 1/a2)
2. Cho a, b, c > 0 và abc = 1
Chứng minh a3/[(1+b)(1+c)] + b3/[(1+c)(1+a)] + c3/[(1+a)(1+b)]
3. Cho a, b, c là 3 cạnh của tam giác. Chứng minh ab + bc + ca =< (c + a - b)4/[a(a + b - c)] + (a + b - c)4/[b(b + c - a)] + (b + c - a)4/[c(a + c - b)]
4. Cho x, y, z > 0
chứng minh (xyz)/[(1+3x)(x+8y)(y+9z)(z+6)] =< 1/74
Cho 3 số : a;b;c thỏa mãn a.b.c=1 và a+b+c = 1/a +1/b +1/c. Chứng minh rằng : 3 số trên có ít nhất một số bằng 1.
Cho ba số hữu tỉ a, b, c thỏa mãn: \(a.b.c=1\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Chứng minh rằng biểu thức \(A=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\) có giá trị bằng bình phương của một số hữu tỉ.
Cho a,b,c > 0 và a.b.c = 1
Chứng minh: \(\dfrac{1}{a+2}\)+\(\dfrac{1}{b+2}\)+\(\dfrac{1}{c+2}\)≥1
cho a,b,c >0
chứng minh rằng:
1/a +1/b +1/c >= 1/căn ab +1/căn bc +1/căn ac
Cho a,b > 0, C khác 0 sao cho 1/a + 1/b +1/c = 0 Chứng minh căn (a+b) = căn(a+c) + căn(b+c)
Cho a,b,c>0 và abc=1. Chứng minh rằng: a+b+c\(\ge\)(a+1)/(b+1)+(b+1)/(c+1)+(c+1)/(a+1)
1. x, y, z >=0.
Chứng minh rằng: 4(xy+yz+xz)<=Căn((x+y)(y+z)(x+z))(căn(x+y)+căn(y+z)+căn(x+z)).
2. Cho a, b, c>0 thỏa 1/a+1/b+1/c=3.
Tìm GTLN của P=1/căn(a2-ab+b2)+1/căn(b2-bc+c2)+1/căn(c2-ca+a2)